
ontrm 4381

the

Fault-Tolerant

ume 1" A in Theorem

Verification

and Mark Bickt-or_F

m

E

m

m

_ _ . _ _ _ --

.... :--- _- --_T

._- .--_- . _ -.

sT = _2-

- -:- T3==_ 2

= !7--- ---

NASA Contractor Report 4381

Verification of the

FtCayuga Fault-Tolerant

Microprocessor System

Volume 1: A Case Study in Theorem

Prover-Based Verification

Mandayam Srivas and Mark Bickford

ORA Corporation

Ithaca, New York

Prepared for

Langley Research Center

under Contract NAS1-18972

National Aeronautics and

Space Administration

Office of Management

Scientific and Technical
Information Program

1991

Contents

1 Introduction 1

2 Formal Verification of Hardware Designs 2

2.1 Clio Summary 3

2.2 Spectool Summary 4

3 The Interactive Consistency Problem

4

4

5

A Hardware Design for Interactive Consistency 6

4.1 The Processor FtCayuga 9

4.2 The Voter 10

Overview of Results 12

5.1 The Design and Specification 12

5.2 Verification 14

6 Related Work 17

The Hardware Design Model 17

7.1 The Timing Model 18

7

The Specification 20

8.1 Specification of IcNet 22

8.1.1 Abstract Specification 24

8.1.2 Design Specification 26

8

oo=

Ul

PRECEDING PAGE BLANK NOT FILMED

8.2 Specification of the Voter Circuit 27

8.3 Specification of the FtCayuga Circuit 31

9 The Correctness Theorems 35

9.1 The Main Correctness Theorem 36

9.2 General Theorems for Bridging Abstraction Levels 39

10 About the Proof of Correctness 41

10.1 Assumptions Made by the Proof 42

11 Concluding Remarks 44

References 46

47

A.1 Structural Specification Part _.............. 47

A.2 Component Classes Specification Part 49

A.3 Controller Specification Part 50

A.4 Composite Behavior Specification Part 51

A General Structure of a Design Specification

B Timing Constraints of the Hardware Model 53

B.1 Timing Implications to Lower Level Design 53

B.2 Timing Implications of Clock Skew on Design 54

iv

List of Figures

1

2

3

4

5

6

7

8

The Four Processor Architecture 7

The Design/Specification Hierarchy 12

IcNet Circuit Diagram 23

Voter Circuit Diagram 28

FtCayuga Circuit Diagram 32

General forms of bridge theorems 39

Clock Timing Convention 53

Implications of Clock Skews 54

V

1 Introduction

NASA Langley Research Center has recently initiated a research effort to develop a validation

methodology for life-critical digital (fly-by-wire) flight control systems. Such systems must

meet stringent reliability requirements. The systems are expected to have a probability of

failure as low as 10 -9 for a 10 hour mission. Hence, as has been well-argued in [10], the

design and validation methods employed for such systems must meet high standards. The

designs must use fault-tolerant strategies to enable the continued operation of the system in

the presence of component failures. The validation methods must ensure that there are no

design errors in the system.

The process of formal verification is capable of showing that a system design satisfies a

specified property for all inputs and initial conditions of the design. Hence it is a promising

candidate for consideration as a validation technology for flight control systems. Digital

control systems are implemented using a combination of hardware and software components.

Hence, a formal verification technology for flight control systems must be applicable to both

software and hardware designs. This work is concerned with the formal verification of a

hardware design.

The paper presents a design and formal verification of a hardware system for a task

that is an important component of a fault-tolerant computer architecture for flight control

systems. The hardware system implements an algorithm for attaining interactive consis-

tency (byzantine agreement) [6] among four microprocessors as a special instruction on the

processors. The property verified ensures that an execution of the special instruction by

the processors correctly accomplishes interactive consistency, provided certain preconditions

hold. An assumption is made that the processors execute synchronously. For verification,

we used a computer-aided hardware design verification tooI, SpectooI [7], and the theorem

prover, Clio [2], both of which were developed at ORA. The microprocessor used in the sys-

tem is called FtCayuga, which we designed by extending the formally verified microprocessor

MiniCayuga [8].

A major contribution of the work is the demonstration of a significant fault-tolerant

hardware design that i s mechanically verified by a theorem prover. The work illustrates the

advantage of using hierarchy and abstraction in system design specification to manage the

complexity of formal verification. The work also demonstrates the value of a special-purpose

tool that tailors the use of a theorem prover to a hardware domain in order to reduce the

effort required for formal verification.

This volumeof the paper containsanoverviewof theworkand an informal description

of the specification and the proof of correctness. This volume gives only a part of the

formalization of the system and the correctnesstheorems.The companion volume [3] of the

paper contains the entire specification and all the correctness theorems we proved.

2 Formal Verification of Hardware Designs

Hardware verification involves the use of a formal verification system, such as a theorem

prover, for analyzing properties of hardware circuit designs. Hardware verification can be

used to show that a model of a circuit design satisfies a given functional or timing property

for all valid inputs and initial conditions of the circuit. Thus, unlike the traditional method

of circuit validation by design simulation, where the circuit is simulated only on a selected set

of inputs, formal verification ensures complete test coverage for the property verified. The

past few years have seen the successful completion of formal verification of several complex

hardware designs ([8], [5], [4]), which shows that the technology is applicable to industry-

scale problems. Formal design verification using a theorem prover consists of the following

steps:

.

2.

.

Specifying a model of the circuit design in the language or logic of the theorem prover.

Expressing the property to be verified about the design as a formula (verification

condition) in the logic of the prover. The formula is usually expressed as an assertion

expected to be true of all possible valid inputs and initial conditions of the circuit.

Proving that the verification condition is a logical consequence of the circuit specifi-

cation. This step is performed using the theorem proving facilities supported by the

prover.

While formal verification is powerful, in principle, it still remains a sophisticated and

tedious process. A high level of specialized expertise is required to construct proofs using

a theorem prover. A substantial part of the effort expended in verifying a design can often

be reused to verify other designs. But, existing support facilities for transferring reuseable

parts of specifications and proofs from one design to another are poor. One way to reduce

2

the tedium and sophistication involved is to build an integrated suite of tools that aid the

user in the verificationprocess.Developinggeneral-purposetools to support the verification

processis hard becausethe techniquesinvolved vary with the domain of the application. If

the domain can be suitably restricted, then it is possibleto automate or at least provide

interactive computer assistancefor a substantial part of the verification process.

Spectoolis a computer-aided verification tool that we have built at ORA to study tlae

above thesis. Spectool is intended to assist in using the Clio theorem prover to formally verify

a class of hardware designs. In the present effort, we used Spectool to automatically generate

formal specifications for various parts of our system and to streamline the construction of

proofs of properties about the specifications. We constructed the proofs using Clio. The two

tools used in the effort are summarized below.

2.1 Clio Summary

Clio is a system for proving properties about programs written in an executable functional

language, Caliban. Caliban is a higher order, polymorphic, lazy functional language similar

to Miranda 1 [9]. A property to be proved is expressed in the Clio assertion language as

an arbitrary first order predicate calculus formula built from atomic literals. An atomic

literal is an equation on Caliban expressions. In the present application, the specifications

of the system and its components are expressed in Caliban. The verification conditions to

be proved are expressed in the assertion language.

The basic proof technique of the Clio prover is normalization, i.e., simplifying expres-

sions on the two sides of an equation to a common form to prove the equation. The prover

supports a set of proof tactics that are useful in conjunction with normalization to prove

more complex formulae. Some of the proof tactics available are: case analysis, structural

induction, fir.point induction, and proof by contradiction. The user can use the prover in

interactive or automatic mode. In the interactive mode, Clio prompts the user with the

available choices in proof tactics, and the user must make the appropriate selection until

Clio proves the formula or discovers a contradiction. In the automatic mode, it makes the

selection on its own based on a built-in strategy.

XMiranda is a trademark of Research Software Limited.
!

2.2 Spectool Summary

Spectool is a computer-aided verification tool targeted for synchronous hardware designs

described at a level of representation that is comparable to the register-transfer level of

hardware. The hardware representation model used by SpectooI is described in detail in

section 7. We designed Spectool based on our experience in using Clio to verify several

hardware designs, the largest of which was the MiniCayuga processor design. The tool is

aimed to reduce the effort required for verifying a design in the targeted class by automating

most of the routine, but cumbersome, parts of the verification process. Generic parts of the

technology axe identified and encapsulated so that the user can reuse them by appropriate

instantiation.

Spectool provides a graphical user-interface that the designer uses to draw a circuit

diagram of a hardware design on an electronic canvas. The designer then annotates the cir-

cuit diagram with various pieces of useful information; for example, one piece of information

is a set of conditions that are expected to hold at specified points during the operation of the

circuit. The tool uses the annotated circuit diagram to automatically generate specification

and verification conditions for the circuit. Spectool aids construction of the proof for the

conditions by generating a set of control annotations to the prover. The control annotations

assist in constructing a proof for the verification conditions either automatically or by apply-

ing a standard proof strategy. The tool provides a facility that the user can use to display

the results of the prover in terms of the symbols and concepts introduced by the user at the

circuit diagram level. This facility is helpful if the standard proof strategy does not succeed.

3 The Interactive Consistency Problem

Fault-tolerant architectures use replicated hardware resources to enable continued operation

in the presence of physical failures of components. Whenever a single source data, such as

inputs from a sensor, must be distributed to replicated resources, the distribution must be

reliable, so that every replicated resource gets the same value. To come to a consensus about

the value of the single source data, the replicated resources must use some kind of voting.

The voting hardware must itself be distributed since the goal is to eliminate all single-point

failures in ;he system. This problem of arriving at a consensus among a set of replicated

resources has been called interactive consistency or Byzantine Generals problem.

4

The interactive consistency(IC) problem [6] in its most generalform is definedas

follows: Considera set of n processors, of which no more than m are faulty. It is not known

which of the processors are faulty. Suppose that each processor p has some private value

of information pvvtp (such as its clock value or its reading of a sensor). The problem is to

devise an algorithm (for given m, n > O) using messages where each nonfanlty processor p

computes a vector of values, such that the following conditions hold:

1. Unanimous : the nonfaulty processors must compute the same value for every processor

2. Correct : the element of this vector corresponding to a given nonfaulty processor is

the private value of that processor.

Many algorithms have been developed to perform this task. One of the main concerns

of fault-tolerant system design is to determine how these algorithms can be incorporated into

a computer system architecture. This paper presents a hardware design solution for the IC

problem for the case in which there are four processing units; the hardware design is based

on the algorithm described for the problem in [6]. This paper presents a formal verification

that the hardware design implements the algorithm correctly. As shown in [6], there must be

at least 3m + 1 processors (replicated resources) to tolerate m byzantine faults in a system.

Thus, our design can tolerate at most one faulty replicated region.

For the four processor case, the algorithm is as follows. The procedure consists of

an exchange of messages, followed by the computation of the interactive consistency vector

on the basis of the results of the exchange. Two rounds of message exchange are required.

In the first round, the processors exchange their private values. In the second round, they

exchange the results obtained in the first round. A faulty processor may "lie" or refuse

to send messages. If a nonfaulty processor p fails to receive a message from some other

processor, p simply chooses a value at random.

After the second round of exchange, each nonfaulty processor p records its private

value for the element of the IC vector corresponding to p itself. The element corresponding

to every other processor q is obtained by examining the three received reports of q's value.

If at least two of the three reports agree, the majority value is used. Otherwise, a default

value is used.

5

4 A Hardware Design for Interactive Consistency

In developing a hardware implementation for the algorithm we had to consider several design

issues. These issues and the design decisions we made are described below.

We designed the system as a synchronous digital circuit. In this paradigm, the com-

ponents of the design operate in lock-step, with parallel activities in the design synchronized

with respect to an implicit global clock. In an actual hardware realization of our design,

distinct components in the design may use distinct physical clocks. In practice, components

that belong to two different fault regions, e.g., the processors, must use separate clocks since

the fault regions must be electrically isolated from each other to preserve failure indepen-

dence. In such a situation, the clocks must be synchronized so that the skew between any

pair is bounded by a fixed amount. The result of the formal verification guarantees that for

any given bound on the clock skew there exists a choice of clock frequency for which our

design operates correctly.

Our design supports the IC operation as a machine instruction on the processors. This

choice allows the software executing on the processors control over the IC operation. That

is, a program executing on the processor determines when an IC computation is initiated,

on what data the computation is performed, and how the result will be used. For the IC

computation to yield a correct result, all the nonfaulty processors in the system must be

synchronized so that they execute the IC instruction simultaneously. Once initiated, the IC

computation will be completed after a fixed number (12) of clock cycles.

The processors in the system are identical copies of a processor called FtCayuga

("Fault-Tolerant Cayuga"). The FtCayuga design is an extension of the design of the for-

mally verified processor MiniCayuga [8]. The extra hardware in FtCayuga provides the

facilities needed to set up, initiate, and store the result of an interactive consistency oper-

ation. A major part of the interactive consistency algorithm is implemented outside of the

processor in a separate piece of hardware called the voter. A separate voter is associated

with each FtCayuga processor. Each processor Sends its private value to its own voter as

well as the other voters, which accomplishes the first round of exchange. The voters perform

the rest of the computation, namely the second round of exchange and the voting. This im-

plementation, with the tasks of exchanging data and voting on separate pieces of hardware,

makes the design moJular and _he verification task simpler by decomposing the proof.

Fault Region A

S

t

a

t
u

s

i Voter A i [

p2_
vl v2 v3 P31_

!

FtCayugaA _

I2 I

L##_I3 _ vstar_
I

I "9

I

I

i

I

I

s

t

a

t
U

s

.................. q

I

I FtCayugaD l II

_tl _ vstarl:t

Voter D

i..

Fault Region D

C

O

N

N

E

C

T

I

0

N

S

Fault Region B

SEtatu
s

FtCayugaB i i

lit _ ;stari

Voter B

SItatu
s

FtCayugaC i

it# _ vstar_

Voter C I

Fault Region C

Figure h The Four Processor Architecture

FtCayuga accepts a single type of (asynchronous) interrupt signal that is intended to

interrupt the normal sequence of execution of the processor. The interrupt signal, being a

single source data, must itself be subjected to a byzantine vote. The topic of designing an

appropriate interrupt mechanism for a fault-tolerant computer system is beyond the scope

of this work. Our system is designed so that once an IC computation is initiated by the

processors an occurrence of interrupts does not interfere with the IC computation.

For the purpose of our analysis, a voter-processor pair forms a single fault region.

A fault region includes all the wires that are driven by the processor and the voter in that

region. Thus, a failure of the voter, the processor, or any of the wires in a region is considered

a failure of that region. The design achieves interactive consistency in the presence of at

most one faulty region.

Figure 1 shows a top-level architecture of the hardware system. The dashed boxes

identify the four fault regions. (The set of wires leading out of and into a region is shown

J

f 7

/

only for Fault Region A; the wires are identical for the other regions.) Each pair of connected

components in the design are connected in a "point-to-point" fashion. That is, shared (buss)

connections are deliberately avoided to isolate the fault regions electrically. Once an IC op-

eration is initiated, the required data exchanges between components happen synchronously,

i.e., without any handshake between the components. A "receiver" component reads its in-

put assuming that the "sender" has provided the required data on the wire connected to the

input. (If the sender fails to output a piece of data at the right time, the receiver reads in

whatever value exists at the input for that data.) A voter outputs to its processor a consen-

sus value corresponding to every processor outside the region and a (4-bit) status vector.

The most significant bit of the status vector indicates if the voter is idle, i.e., ready to vote

on a new set of values. The remaining bits of the status vector indicate whether the voter

was able to determine a majority for a each of the processors outside the region. Having

the status vector as an output of the voter eliminates the need to explicitly represent the

default value used in thc algorithm.

Every distinct unit of data, except the status vector, that is exchanged between two

components in the design is a processor word. In the design and the specifications, we make

no assumption about a data word other than that it contains a sequence of four bytes. For

example, we make no assumption about the size of a word since the logic of the design, at

least at the level at which it is being considered here, is not dependent on that information.

The correctness proof developed here holds for words of arbitrary size. We can specialize our

design specifications to a specific word size without redoing the entire proof of correctness.

Such a specialization must be done to translate our design into a lower level of hardware

representation.

Our aim is to design the system so that the voters (and processors) in the network

are identical to each other. Consequently, the logic of a voter/processor cannot maintain

any absolute index for the voters/processors in the network. A voter/processor is designed

assuming that the there is a way to index the fault regions by means of a cyclic index set.

(The voter and the processor in a region take the index associated with the region.) An

index set, INDEX, is cyclic if there exists a successor (mod 4) function on the set such that

the following conditions hold for every ind E INDEX:

successor4(ind) = ind

l * 1 "
successor'(ind) = successor- (successor(ind)), 1 <_. < 3

8

Thus, for everyvoter/processorin aregionwith index ind there exists a voter/processor

with indices successor(ind), successorS(ind) and successora(ind). A component inside a fault

region is designed assuming a fixed association between an input port and the index of the

component connected to the port. For example, every voter expects to read at its input vi

(or pi), data from its successor i voter (or processor), for 1 < i < 3. Every processor expects

to read in at Ii the component of the IC vector corresponding to its successor / processor, for

1<i<3.

The voters and the processors must be connected so that every voter/processor pair

in a region can be assigned a unique index from a cyclic index set. For example, suppose the

pl, p2, and p3 inputs of Voter A (in Figure 1) are connected to FtCayugaB, FtCayugaC,

and FtCayugaD, respectively. This implies that B, C, and D are successor, successor 2 and

successor 3 of A, respectively. Then, the inputs pl, p2 and p3 of Voter B, for example, must

be conhected to the FtCayuga's in regions C,D and A, respectively.

4.1 The Processor FtCayuga

FtCayuga, like its predecessor, MiniCayuga, is a 3-stage instruction pipelined RISC processor

with thirty two general-purpose program registers. The processor normally takes three cycles

to complete the three stages-- fetch, compute, and writeback--involved in the execution of

an instruction. Since the processor is pipelined to simultaneously execute three instructions

in a cycle most of the time, it can attain an execution rate close to one instruction per cycle.

To support interactive consistency, we added the following new features to FtCayuga.

A special register file (SREG) holds all the data relevant to IC computation. SREG[0] holds

the value on which IC computation is performed. SREG[1] through SREG[3] contain, in

order, the consensus values computed for the successor, successor = and successor a processors.

SREG [4] contains the status vector upon completion of the IC computation. The professor

provides three new instructions to help manage an IC computation. SADD and HOVE mo_e data

between REGFILE and SREG. ICOP initiates an IC computation. Once initiated, the processor

performs IC computation on the current contents of SREG[0], provided SREG[0] is not

changed by the program for one cycle immediately after IC0P is executed, and automatically

stores the results from the voter at the proper destinations. Brief descriptions of these

instructions follow.

r

SADD Reg Sreg

ICOP

MOVE Sreg Reg

moves content of the general purpose register Reg into Sreg

(acts like nop if destination is SREG[I] through SREG[4])

clears status register (Sreg[4]) in sreg; initiates IC

computation on SREG[O], provided SREG[O] is not changed once

ICOP is initiated; nop if another ICOP is underway

moves content of the special register Sreg to the general

purpose register Reg

The following is a FtCayuga "assembly level" program that one can use to perform an IC

computation. In this program, the processor idles (busy waits) while the voter performs

the 12-cycle IC computation. It is possible, however, to put these machine cycles to more

productive use by performing some other necessary computation while waiting for the results

from the voter. (The text following the characters I I are comments.)

II check if voter is free

Notfree MOVE SREG4 REGI

JIF REGi Notfree

NOP

SADD REG2 SREGO

ICOP

][SREG4 is STATUS

I[jump if msb[REGi] is False

]l pad nop to counter prefetching of pipeline

i[REG2 contains the byzantine data

[I check if IC computation is complete

Notready MOVE SREG4 REGI

JIF REGI Notready

NOP

II move the results of IC vector to general register file

MOVE SREGI REG3

MOVE SREG2 REG4

MOVE SREG3 REG5

4.2 The Voter

In designing the voter, we needed to decide whether the different units of data read by the
I

voter and the bits in a unit must be read serially or in parallel. The decision poses a trade

off between the number of pins needed on the voter and the number of cycles required to

10

complete a read. When the word size is as large as 32-bits, performing the read completely

serially will make the design too slow. Performing the read totally in parallel will require

such a large number of pins that the design will not be implementable on a chip. Hence, our

design uses a mixed mode of data exchange. Every word of data is read serially one byte at

a time, starting with the least significant byte. To conserve the number of pins, the voter

does not provide a distinct port for every distinct word of data it must read. Rather, it

provides only one (byte-wide) input port for every distinct sender, i.e., voter and processor,

from which the voter must input.

The voter outputs to the processor an IC vector and a status information vector. The

IC vector has three elements in it, one element for every processor not associated with this

voter. Note that it is not necessary for the voter to send the private value corresponding to

its own processor as the processor already has the value. The voter is designed so that it

does not even compute a majority on the value associated with its own processor.

The voter operates in one of five states. In the "idle" state, the voter waits and

indicates that it is free by keeping the most significant bit of status high. The voter

remains idle until it receives a "go ahead" signal on the vstart input line, upon which it

moves to the load state.

In the "load" state, the voter reads the private values from each of its three successor

processors on the input lines p1, p2, and p3. It then moves to the "exchange" state in which

it sends the data received on pl, p2, and p3 out on the cross output line, in that order, while

reading data on the input lines vl, v2 and v3. It reads the data on vl, v2 and v3 selectively

ignoring the bytes that belong to the private value associated with its own processor.

At the end of the exchange state, the voter will have read a total of nine values that

are grouped into three read sets, one for every processor outside the voter's region. In the

"compute" state, the voter compares the three values in each of the read sets to produce

three majority values. The majority value of a set is computed by taking the majority of

the three values in the set. In the "output" state, the voter outputs the results of the IC

computation to the processor.

11

IcNetStep

LEVEL 3

voter actions:

changestate
voterout

byzchange

byzout

LEVEL 2

Execute

LEVEL 1

LEVEL 0

IcNet

Execute

voter

7/
E

bytereg

FtCayuga

latch alu regfile

FtCayuga actions:

cayugastep

cayugaout

byzcayuga

byzcayugaout

Execute

,ww

decoder mem sregfile

Figure 2: The Design/Specification Hierarchy

5 Overview of Results

Before presenting the complete details, we give an overview of the formalization and the

verification of our system.

5.1 The Design and Specification

Th$ hardware system is designed as a multi-level hierarchy, as shown in Figure 2. Every

(non-primitive) block in the hierarchy is specified in Caliban at two levels: abstract level and

12

designlevel. The abstract specifications, which are written manually, describe the behavior

of the blocks by hiding (and, possibly, restructuring) some of the details of the_designs. The

abstract specifications were constructed primarily to decompose the proofs into smaller units

and present the designs more intuitively than the detailed design specifications. The unit of

time at which actions are viewed is also abstracted. For example, while the smallest unit of

time in the design specification of voter and processor corresponds to one phase on a 4-phase

clock, the smallest unit of time in the design specification of IcNet corresponds to a clock

period.

We described the design at a level of hardware representation that we refer to as a finite

state controller circuit; this level of detail is comparable to a register transfer level description

of hardware. A finite state controller circuit consists of a data path and a controller. The

data path for a block is constructed by connecting one or more instances of blocks at the

next level below. The controller is described as a finite state machine that co-ordinates the

actions on the data path blocks. The operational behavior of a finite state controller circuit

model of hardware is described in section 7. The formal design specification is generated

automatically by Spectool from a graphical representation of a finite state controller circuit in

a standard fashion. The standard structure of a design specification for a circuit is described

in the Appendix A.

We consider a fault to be a condition in which a piece of hardware is not operating

within its specifications and an error to be an incorrect operation due to a flaw in the design

of the hardware. When a fault occurs in a block, errors may or may not be produced.

Hence, the state and the outputs of the block must be considered to be unknown. In

our formalization, we model the possible occurrence of component hardware faults and the

unknown nature of the resulting state of the hardware. It is important to note that this

modeling is for specification purposes only and is not part of the hardware design. Thus,

whenever the formal specifications consider the two cases of whether a component is faulty

or not, this analysis is not intended to be part of the hardware logic.

The possibility of a region of IcNet being faulty is modeled by means of the predicate

faulty on the indices associated with the fault regions. The term faulty(ind) is true if

and only if the region with index ind is faulty. Fault modeling is used only in the design and

abstract specifications of IcNet in the design tree because this is the only place where the

hardware is replicated and the condition to be verified is an interactive consistency criterion.

At other levels there is no replication in the design, and hence fault modeling is not needed

13

in the specifications.

5.2 Verification

What we mechanically verified is that the system performs the interactive consistency com-

putation correctly provided the components in the system are synchronized properly to

execute the ICOP instructions and at most one region is faulty during the computation.

More specifically, we verified about the design the following IC correctness condition. The

condition relates two states of the system that are 12 cycles apart.

Assuming

(I) there is at most one faulty region,

(2) the nonfaulty processors have all advanced to execute the

writeback stage of the special ICOP instruction, and

(3) the nonfaulty voters are all synchronized to be in idle state,

then 12 cycles later

(i) the nonfaulty voters will again be idle, and

(2) the IC vectors of the nonfaulty processors will satisfy the

unanimity and the correctness criteria for interactive consistency

(The IC vector for a processor is defined to be the value of SREG[0]

at the beginning of the IC computation followed by the contents

of SREG[I], SREG[2], SREG[3] at the end of the IC computation.)

The behavior of a circuit is defined formally as the set of all possible legal (infinite)

traces of the state of the circuit and its outputs genex:ated over time (clock cycles) as the

input signals change over time. At the design level the generation of a single step of a trace

is specified by means of an "Execute" function. At the abstract level, the same is specified

by means of a set of "Step" functions. The single cycle behavior of the entire system, i.e.,

IcNet, is defined by the function IcNetStep.

The verification is carried out hierarchically' The IC correctness condition is proved

as a property of IcNetStep (iterated 12 times). The design of every (non-primitive) block

is verified separately by proving that its "Execute" function implements its "Step" func-

tions correctly. To verify the design of a block with respect to its abstract specification, an

abstraction function (ABS) is defined to relate a design s_ate to its corresponding representa-

tion in the abstract specification. An advantage of such a hierarchical approach is that the

14

verification can be done incrementally one block at a time. The implementation correctness

has been verified for IcNet and Voter, but not yet for FtCayuga. Thus, our verification

guarantees that the system as a whole satisfies the IC correctness condition for any finite

state controller circuit design for FtCayuga that meets the given abstract specification for

FtCayuga.

We deferred the verification of FtCayuga for the following reasons. The abstract

specification that we have developed for FtCayuga is much closer to a design specification

than a traditional instruction level description of a processor. Secondly, we plan to enhance

certain other parts of FtCayuga hardware that do not deal with interactive consistency to

make FtCayuga more versatile. So, we decided to postpone the verification until all the

enhancements were completed.

A top level formalization in Clio of the IC correctness condition is given below. More

details are given in section 9.

MainTheorem := Preconditions 's'

=> Consistent 'icvec s (Iteraze #12 IcNetStep s)'

Preconditions 's' := Proper_icnet 's' _ Sync 'LDPI' Cs' _ All_go 's'

The predicate Preconditions formalizes the preconditions listed in the informal cor-

rectness statement given earlier. Sync and All_go define the preconditions on the voters

and processors, respectively. Proper_icnet is a condition on the system state that is sep-

rarately proved to be true in every cycle. This condition includes certain genera/properties

about our specification model. Hence, it can be used to strengthen the preconditions of the

theorem. The requirement that at most one region is faulty does not explicitly appear as a

precondition in the MainTheorem because the predicate faulty, which is used inside Sync

and An_go to assert a region being faulty, is itself defined so that at most one region can

be faulty. The proof proceeds by a case ana/ysis on the five possible "at most one fault"

situations.

The predicate Consistent formalizes the IC cqrrectness criteria (section 3) as a con-

dition on the vector of IC vectors of the processors. The vector of IC vectors is constructed

by the function icvec from the states of the processom at the beginning and the end of the

IC computation.

15

The correctnesscondition ensuresthat, once the processorshave advancedto the

point of executing the writebaci¢stage of an ICOP instruction, the IC computation gets

completed correctly. The condition guarantees that, when an IC computation is underway,

neither the occurrence of interrupts nor the execution of any other instructions, including

another ICOP, will interfere with the IC computation.

The correctness condition is not sufficient to ensure that the microprocessor system

can be programmed to reliably accomplish the interactive consistency task under all circum-

stances. To see what other conditions must be proved, one must consider the different ways

in which the preconditions to the property we have verified may be violated. For example,

the clocks driving the replicated resources may not all be synchronized. Since the clock sig-

nals are implicit in our model, proving that the clocks are synchronized is outside the scope

of the present framework. It is best to separate this task since clock synchronization circuits

are designed and implemented separately. Some of the other conditions that are within the

scope of the framework that must be proved are the following.

1. The only way in which an IC computation gets initiated must be by means of an ICOP

instruction. The destination registers in SREG, where the results of an IC computation

will be stored, must be protected from being written into by any other means. These

conditions are required to ensure that the results of an IC computation will not get

changed before they are properly used.

2. There must be a way of initializing the system to a state that satisfies the precondition

to the MainTheorem. For this it is necessary to design a spe.cial resetting sequence that

must be proved to accomplish the objective. The current design does not support such

a reset.

3. An IC computation must leave the system in a state in which a new IC computation

can be properly initiated. That is, the precondition to the MainTheorem must again

hold at the end of the computation. We have proved that the Proper_icnet condition

holds again. The rest of the precondition should follow from some of the lemmas we

had to prove in establishing the _ainTheorem, but must be mechanically checked.

4. The hardware added to the processor to deal with interactive consistency must not

affect the correctness of the other instructions.

16

6 Related Work

In the past few years, we have seen the formal verification of several significant hardware

designs--[5], [4], and [8], to cite a few related to microprocessors---described at a level com-

parable to ours. None of the microprocessor efforts so far have dealt with replicated fault-

tolerant designs. The work that comes closest to ours is another NASA sponsored effort [1]

in which an interactive consistency design was independently verified using the Boyer-Moore

theorem prover. The hardware design verified in [1] is a special-purpose circuit--similar to

our voters, but more abstract--that is devoted primarily to interactive consistency. The

design in [1] does not deal with the support of interactive consistency as an instruction on

a microprocessor and the required interaction between the voting circuit and the replicated

microprocessors. In [1] an abstract implementation of the algorithm [6] for the most general

case is also mechanically verified.

7 The Hardware Design Model

We refer to our representation model of hardware designs as a finite state controller circuit. A

finite state controller circuit consists of a controller part and a data path part. For example,

a finite state controller circuit design of the voter is shown in Figure 4.

The data path is a set of interconnected components. Some of the components can

be connected to input and output ports for external communication. Every component is

assumed to support a set of actions that collectively define the behavior of the component.

An action, when triggered on a component, may cause a change in the internal state and/or

the state of the signals at the outputs of a component. The effect of an action is a function

of the current state and current inputs of the component. For example, a latch has a single

action, Set, which has the effect of updating the internal state of the latch by the signal

that appears at the input wire of the latch. A component denoting an arithmetic logic unit

(ALU) can have an action for every arithmetic/logical operation it supports.

The controller coordinates the actions in the data path. It is described as a finite

state machine that schedules a set of actions in each of its states. Thus, actions defined

on a component are abstractio, ns of control signals accepted by the component. The inputs

to the controller can originate from the data path or from outside the circuit. The set of

17

actions scheduledis definedasa function of the current controller state and inputs. Every

action scheduledin a state is assumedto be triggeredsimultaneouslyupon a controller state

transition. A controller state transition correspondsto an advancementof discrete time (a

cycle)on the implicit global clock. Section7.1 describesour timing model in more detail.

The behavior of a finite state controller circuit is defined as a trace of the state of the

circuit as its inputs change over time. The state of a circuit may include its outputs and the

states of the controller and data path components. The behavior of a finite state controller

circuit is uniquely determined given the following:

• The data path and controller structure.

• The controller schedule.

• A specification of the effect of the actions on every component.

It is possible to write a generic formal specification for a finite state controller circuit that

derives the behavior of the circuit given the information listed above, which is precisely what

Spectool does. In Spectool, the user presents the information listed above graphically, with

appropriate textual annotations for specifying the actions.

7.1 The Timing Model

The specification models the design at a synchronous level of timing. In a hardware imple-

mentation of the design, the actions on the controller and other components will actually be

triggered by some synchronizing event, e.g., the active edge, of a master clock. The clock,

however, remains implicit in our model. We use a discrete notion of time that has a fixed

relation with every state transition of the controller. We associate every cycle of the clock

with the state in which the controller will be for the duration of the cycle. Every clock

cycle may be further subdivided into a finite number of phases of equal duration (we use

four phases). The actions scheduled by the controller in a state are distributed among the

four phases. The lowest granularity of the discrete time used in the design specifications

corresponds to the duration of a phase of a clock cycle.

The actions on the components may introduce different amounts of delay measured

in integral numbers of phases. If an £ction, with a delay of 5 (> 0) unitr, is scheduled on a

component in phase t of a cycle, then the effect of the action is guaranteed to be completed

18

and the "results," i.e., state and outputs, availablefor usein phaset+6. The inputs needed

for an action must be ready in the phasein which the action is scheduled.An action may

have "zero" delay. Suchan action must be implemented by a combinational block whose

outputs areassumedto be availablein the samephasethe action is scheduled.For example,

in our designthe actionson a multiplexer and the action scheduler, i.e., the combinational

logic in the controller that determines the control signals, have zero delay.

Between the time t+l and t+6-i (for 6 > 1), when an action is still underway on a

component, we assign its state and outputs an "undefined" value, although in reality some

arbitrary signal value might actually be present. The constant bottom of Caliban is used to

represent the "undefined" value. We define the effect of performing an action on a component

in a bottom state or with a bottom input to be always bottom. This convention allows us to

perform a form of timing analysis on our design. We can ensure that the following conditions

will not be violated by the design by verifying that no part of the design is bottom after

every action in a given schedule of actions is completed.

1. No action will be started on a component when another action is still underway on the

component.

2. When an action, a, is underway on a component no other action that is dependent on

the results of a will be started before a is completed.

A detailed discussion of some of the timing constraints that our abstract timing model

imposes on a lower level hardware representation of our designs is given in Appendix B. The

constraints can be summarized as follows:

• The real delay introduced in practice by the combinational logic implementing our zero

delay actions must be small enough with respect to the actual clock period chosen. If

distinct clocks are driving different parts of the circuit, then the skew between the

clocks must be similarly bounded. A more precise characterization of the constraint in

terms of worst case "setup" time for lower level devices is given in Appendix B.

• To overcome a timing problem that can arise when there is a significant skew between

the clocks driving two distinct blocks that exchange data, we employ the following con-

servative convention in our designs: The sender must hold its signal for one additional

pha _e following the phase in whivh the receiver is supposed to use the signal.

19

8 The Specification

The entire system is constructed and described as three finite state controller circuits that

implement each of the three main blocks--I cNet, FtCayuga, Voter--in the design hierarchy

shown in Figure 2 (section 5). IcNet is constructed from four instances each of a Voter and

an FtCayuga. A voter is built from a majority block (3 instances) and a bytereg block

(3X3 = 9 instances). A FtCayuga is built from blocks, such as alu, regfile, decoder, etc.,

that are normally found in a block level design of a microprocessor.

Note that the Voter and FtCayuga blocks have a dual status. That is, at one level they

are designed as nontrivial finite state controller circuits and at another level they are used as

data path components in the design of another block. Hence, two different specifications--

design and abstract--that appropriately describe their behavior at the two levels are devel-

oped for each. The IcNet specification is developed by composing the abstract specifications

of the voter and processor. The abstract specifications hide and reorganize some of the de-

sign details that appear in the design specifications. Having two specifications for the blocks

decomposes the system specification into smaller and more readable units. It also simplifies

the overall correctness proof by decomposing it into separate and smaller units. For similar

reasons, an abstract specification was also constructed for IcNet although the IC correctness

condition couIdhave been verified directly as a property of the design specification of IcNet.

The remaining blocks shown in Figure 2 are treated as primitive blocks; therefore, they are

given only an abstract specification.

The abstract specification of a block defines a set of actions that together capture

the intended external behavior of the block. For example, the alu block supports actions

that perform the various arithmetic and logic operations, such as add, subtract, etc. The

regfile block supports actions to read from and write into the registers in the register file.

The normal behavior of Voter and FtCayuga are specified by "step" and "out" actions. The

"step" action defines the effect on the state of the block for a single clock cycle. The "out"

action defines the outputs produced by the block in a clock cycle. The blocks also support

an additional set of pseudo actions whose names are prefixed with the string "byz." The

"byz" actions, which are left unspecified, are used to denote the effect on the state and the

outputs of the block when the block is faulty. The design specification for a block defines the

design behavior by means of an "Execute" function. The "Execute" function for a block is
!

defined by composing the actions of the blocks used in the design.

2O

The granularity of time getsmore abstract, i.e., coarser,as we move up the design

hierarchy. The smallest unit of time used in the designspecificationsof the voter and

processorcorrespondsto the duration of a phaseof a 4-phaseclock implicit in the designs.

The "Execute" functions for voter and processordefine the cumulative behavior of the

designsfor a singleclockperiod. The unit of time usedin the specification of actions on the

voter and processor,as well as in the designof IcNet, is a singleclock period.

Note that the voter and processoi"circuits, in reality, consumeand produce signals

(and changestates) in everyphaseof a clock. Hence,a consequenceof abstracting time to

a clock period in a specification is that the value of a signal at any time instant must be

representedin the specificationasa 4-tuple, whereeachfield of the tuple indicates the value

for the signalin a distinct phaseof the clock. This introducesa certain degree of artificiality

to the way in which the input signals to an abstract voter and processor are interpreted.

The "current input" of a component is a tuple of the values the signal at the input has in

the four phases of the current cycle. A "step" action defines the next state as a function of

the current state and the current input viewed as a tuple. For this reason, while composing

the abstract specifications of voters and processors, the "out" actions must all be done first

on the components before the "step" actions.

It must be noted that it is not possible to meaningfully apply such a temporal abstrac-

tion in all situations. This abstraction is possible for the voter and processor because their

outputs produced in each of the four phases of a clock cycle are determined as a function of

only the state at the beginning of a cycle. That is, none of the outputs is dependent on the

intermediate states of the block within a cycle. Similarly, the state at the beginning of the

next cycle is not dependent on the intermediate states.

We decided to employ the above mechanism, although it appears a bit tricky, because

the alternative method involves composing the voters and processors at the phase level. A

phase level composition would substantially increase the number of states to be considered

in a specification, with an increase in the complexity of verification as well.

The next three sections describe the design and abstract specifications of the three

major blocks of the system. In the abstract specification, the behavior of the block is defined

using an abstract representation for the state. The design specification is expressed in terms

of the data path and finite state controller used in an actual design. For each of the blocks, we
• I

first give an informM description of the finite statue controller circuit implementing the block.

21

Following that informal description, we give a top level part of the abstract specification

for the block along with a brief explanation of the specification. We have not provided

a description of the design specifications as they are generated by Spectool in a standard

fashion from the circuit diagrams. Appendix A gives a description of the general structure

of the design specification generated by Spectool. The full text of the specifications is given

in N-

8.1 Specification of IcNet

The data path for IcNet is shown in Figure 3.

The voter and processor components used at this level of design are abstracted versions

of the actual voter and processor designs. The main abstractions employed are described

below. Some of the individual inputs (and outputs) that appear in the voter and processor

designs are combined into a single compound input (and output). All the outputs of a voter

intended for a processor are combined into a single output (to_proc). The corresponding

inputs of a processor are also combined. (Hence only a single wire is shown carrying the

signals from the voters to the processors in Figure 3.) All the inputs that a voter expects

to get from a processor axe combined into a single input (from_proc). The special T-shaped

component in Figure 3 is used to combine a sequence of signals into a single compound

signal.

Note that the connections that replicate, i.e., fan out, the output signal denoting the

private value of a processor to voters in other regions are encapsulated within the abstract

processor component. Similarly, the connections that fan out the output from a voter in-

tended for voters in other regions are encapsulated within the abstract voter component.

Hence every voter and processor has three additional outputs that normally carry the same

value. The replicated outputs from a voter and a processor are marked with an asterisk in

Figure 3. (In the figure, the asterisks are shown only for one voter and one processor, since

the others follow a similar pattern.) This encapsulation makes it possible to capture in our

specification the possibility of a failure in a wire connecting two regions as a failure of the

component that is producing a signal on the wire. To specify this failure, we assign either a

normal or an unknown fault signal value for each of the additional ports.

22

from_proc

to_proc _V_I

Datapath

Conu'oH_S_Machin¢

Figure 3: IcNet Circuit Diagram

23

8.1.1 Abstract Specification

The abstract specification defines the behavior of the system by means of the function

IcNetStep. IcNetStep defines the state of IcNet in the next cycle as a function of the

state in the current cycle after accounting for the possibility of faults in the system. The

state is represented as a tuple that includes the states of the voters and processors, which are

structured as aggregates. The state of the aggregate of voters (or processors) is represented

as a function from region indexes (type INDEX) to the current state of the individual voter

(or processor) in the aggregate. For convenience, the only input to IcNet, a set of four

interrupt signals meant for the processors, is also included as part of the state of IcNet. The

input component in the state is represented as a list that can be arbitrarily long. The list

contains the values for the input signal over time starting from the current cycle. Defining

IcNetStep as a function over a list of input values, instead of only on the current input, is

an advantage because it is easier to express multi-cycle behavior of the system by iterating

IcNetStep over the list.

************************* Step function for IcNet *****************************

_ The abstract state change (behavior) of the voter-net.

]l What happens at each index depends on whether that index is faulty.

IcNetStep <<ftc,vtr, int:rest>> =

<<newftc,newvtr ,rest>>

where newftc index = fault_ftc_step index ftc (ftcinput index)

newvtr index = fault_vtr_step index vtr (vtrinput index)

ftcinput index = make_ftc_in (select_int index int)

(fault_to_proc index ftc vtr)

vtrinput index = Voterinput index ftc vzr

fault_ftc_step index s in =

FtCayugaStep (s index) in ,

byzCayugaStep (s index) in

"(faulty index)

fault_vtr_step index s = voterstep (s index) ,

byzstep (s index)

-(faulty index)

fault_to_proc index ftc vtr =

to_proc (vtr index) , "(faulty index)

24

byz_to_proc (vtr index)

Voterinput index ftc vtr =

<<fault_from_proc index ftc,

faulZ_cross THREE (succ3 index) vtr,

fault_cross TW0 (succ2 index) vtr,

fault_cross ONE (succ index) vtr>>

fault_from_proc index ftc =

<<fault_vstart index ftc,

fault_prvt (.hichprvt index (succ index)) (succ index) ftc ,

fault_prvt (whichprvt index (succ2 index)) (succ2 index) ftc,

fault_prvt (whichprvt index (succ3 index)) (succ3 index) ftc>>

The value that IcNetStep returns is defined in terms of the following set of functions:

fault_ftc_step, fault_vtr_step, fault_to_proc, and Voterinput. The first two of these

functions define the next state for the processor and the voter aggregates, respectively, as

a function of their current state and inputs. The last two define the current inputs to the

processor and voter aggregates, respectively, being produced from the other aggregate. In

other words, they define, respectively, the aggregate of outputs of the processors and voters.

(Note that make_:ftc_in constructs the complete input to a processor by combining the

external interrupt input and the inputs being produced by the voters.)

The functions mentioned above take into account the possible occurrence of faults.

These functions are defined in terms of the functions that specify the normal behavior and

faulty behavior of the voter and processor. FtCayugaStep and from_proc define the normal

behavior, i.e., next state and outputs, for FtCayuga. The functions voterstep, cross, and

to_proc define the normal behavior of the voters. The functions that are prefixed with the

string "byz" define the faulty behavior of the voter and processor. There is one such function

to denote the state and every output of the voter and processor. The functions denoting the

normal behavior are defined in the abstrax=t specification for the voter and processor. The

"byz" functions are left unspecified, which has the effect of making no assumptions about

the state and outputs of a faulty component except that the state and outputs have some

unknown values.

25

The possibility of a region of IcNet being faulty is modeled by means of the predicate

faulty on the type INDEX-- the term faulty(ind) is true if and only if the region with

index ind is faulty. That is, one or more components in the region ind are faulty. The

predicate faulty is defined so that at most one region can be faulty. We define faulty in

terms of an unspecified constant, the_.fault (of type FAULT), which may take one of five

values denoting the five possible "at most one fault" situations: one or none of the four

regions being faulty. The specification of the predicate faulty is given below.

************************* Fault modeling *******************************

II The possible faults are listed in the following enumerated type:

FAULT ::= Region !INDEX I NO_FAULT

[[To model the fact that we are assuming at most one fault, we can suppose

[[that there is a constant, "the_fault" of type FAULT, and then define the

[[predicate "faulty" in terms of that constant.

the_fault :: FAULT

AXIOM '!the_fault'='True'

faulty index = (the_fault = (Region index))

8.1.2 Design Specification

We generated the design specification using Spectool by constructing the data path and

controller shown in Figure 3. The controller used in the design of IcNet is purely symbolic

in the sense that it does not translate into any real hardware. The controller is constructed

for two reasons. First, to generate a design specification using Spectool, it is necessary to

have a controller to activate the data path. Second, having a controller makes it possible to

conveniently specify the behavior in the presence of faults.

The controller consists of just a single state GO. If any one of the regions is faulty it

schedules the respective "byz" actions on every component in the region. Otherwise, the

controller schedules the normal actions on the components. The design specification uses

the same formal machinery for fault modeling as the abstract specification uses. That is, the

26

controller actions are conditioned on the predicate faulty shown earlier.

While scheduling the actions, the controller must schedule the actions that produce

the outputs on all the components before scheduling the actions that advance the state of

the components. One way to accomplish this scheduling in Spectool is to assign the "Out"

actions zero delay and the "Step" actions unit delay.

8.2 Specification of the Voter Circuit

Figure 4 shows the circuit diagram of the voter. A voter has the following inputs and outputs:

• vstart is a 1-bit input through which the voter gets the signal to start the voting

process.

• prvtl, prvt2, and prvt3 are byte-wide inputs through which the voter reads the

private values from the out-of-region processors.

• vinl, vin2, and vin3 are byte-wide inputs through which the voter reads the second

round data from the other voters.

• free is a 1-bit output that is true as long as the voter is free to start another voting

process.

• cross is a byte-wide output through which the voter outputs its first round data to

the other voters.

• sndng is a 1-bit output that is true when the voter is ready to send the three consensus

values through the byte-wide outputs ml, m2, and m3.

• status is a 3-bit output that indicates if the voter was able to determine a majority

value for each of the three outputs ml, m2, and m3.

The data path of a voter is constructed from the following component classes: bytereg,

majority, bitlatch and mux. A bytereg stores a single word (four bytes) of data and is

like an ordinary register. But, it has actions seti (unit delay) and readi (zero delay) to

set (from the input at the top) and read out (from the output at the bottom) each of the

four bytes in the word separately. The entire stored word is available at any time at the

side output. The voter has a total of nine instances of bytereg: PR1, PR2, and PR3 (private

registers) to store the private values read in directly from the processors; and the rest (cross

registers) to store the values (two from each of the voters in the other regions) read in the

second 'round. (The voter uses Rij 'to .store the private value that the processor succ i sent

to voter succ i in Round 1. This voter reads this value in Round 2 at input vini.)

27

C

O-

!1

t

r

O

1

1
°

e

r

/
\ zin2

/

Datapath

Controller StateMachin_

Figure 4: Voter Circuit Diagram

28

A majority block supports the following actions: comp (unit delay) computes the

"majority" of the three inputs (coming in at the side of the icon representing the block) and

sets the internal state to the majority value. The majority, when it exists, is the input that

is identical to at least one other input. The 1-bit status output (bottom left of the icon) is

set to a '1' iff there exists a majority. If a majority does not exist for the inputs, the only

assumption made about the computed majority value is that the value must be the same

regardless of the order in which the inputs are presented. The majority block has four (zero

delay) actions, selecti, to select each of the four bytes of the majority data stored in the

block.

The controller first sets the private registers to the values read from prvti inputs.

Then, it sends out the values in the private registers while setting the cross registers to the

inputs read at vini input ports. Then the controller computes majority and sends them

out. The control logic is involved because a transfer of data to and from a register must

take place one byte at a time. We use two phases per transfer, although the seti action

has only a unit delay. This strategy follows the safe design convention (appendix B.2) of

holding the output signal for one phase beyond the phase in which the signal is used. The

data associated with the voter's own processor, coming in on each of the vini inputs must

be ignored. This data arrives at different times at different vini ports. Finally, the voter

must perform a handshake with its processor at the start and finish of the voting process.

The actions scheduled in the various states of the controller are summarized below. For ease

of presentation, we group the controller states into four stages. The actions performed in

the states within a stage are similar and are logically related.

1. Load stage (LDP1, LDP2): In LDP1, with the bit latch V$ in '0' state, the controller idles

until vstart becomes a '1'. (That is, the controller takes no action, except, in phase 2,

to set VS to the value of vstart. Thus, the controller reads vstart only in phase 2 of a

cycle.) The controller holds the output free '1' as long as the voter idles, keeping free

'0', otherwise. With VS set to '1', in phases 0 and 2, the controller initiates actions

to set the two least significant bytes of the private registers. In LDP2, in phases 0 and

2, the controller initiates actions to set the two most significant bytes of the private

registers.

2. Exchange stage (XNGil, XNGi2, 1 < i < 3): In XNGil, the controller initiates the

following set of actions: select (in phases 0 and 2) the two bytes in the least significant

half of PRi and output them (via MUX) over cross; set (in phases 1 a_ld 3) the two

bytes in the least significant half of the two appropriate cross registers. The controller

29

initiates a similar set of actions in XNGi2except that the most significant half of the

registersare involved.

3. Compute stage (CMPP): In the CMPP state, in phase O, the controller initiates the comp

action on each of the majority blocks.

4. Output stage (0UT1, OUT2): In 0UT1 and 0UT2, in phases 0 and 2, the controller initiates

actions to read out (onto ml, m2 and m3) the least and the most significant bytes,

respectively, of the result of the previous comp action on the maj ority components.

The output sndng, which the controller holds at '0' in all other states, is mMe '1' in

OUT1 to indicate that the voter is beginning to send the majority values. At the end

of 0UT2, VS is reset so that the voter can go back to being idle.

A part of the abstract specification of the voter is given below.

VoterStep <<cstate,array,m_,go>> from_proc from_voters =

<<nextstate cstate <<go,go>>, newarray, newmaj, newgo>>

where

newarray

newarray

newarray

newarray

newarray

newarray

newarray

newarray

newarray

{(cstate = LDPI) a go} = update_rowl LO array from_proc

{cstate= LDP2} = update_rowl HI array from_proc

{cstate= XNGII} = update_diagonal 0 LO array from_voters

{cstate= XNG12} = update_diagonal 0 HI array from_voters

{cstate= XNG21} = update_diagonal i LO array from_voters

{cstate= XNG22} = update_diagonal I HI array from_voters

{cstate= XNG31} = update_diagonal 2 LD array from_voters

{cstate= XNG32} = update_diagonal 2 HI array from_voters

= array _ otherwise it's unchanged

newmaj = (cstate = CMPP)->(maj_vector array) ; maj

newgo = beginof (select (#2) from_proc)

beginof (select (#2) from_proc)

go

, cstate = OUT2

, (cstate = LDPI) _ ('go)

3O

In the abstract specification, the state of the voter is abstracted into a tuple with the

states of the various components in the design organized as follows:

•cstate represents the controller state.

• array represents the combined state of the array of the private and cross registers in

the design.

• maj represents the combined states of the majority blocks in the design.

• go represents the state of the VS latch.

VoterStep defines the state of the voter in the next clock cycle as a function of the current

state and the two abstracted (compound) inputs to the voter, one from the processor and

the other from the voters. The outputs of the voter are specified by defining a separate

function for every output. We deliberately did not abstract the controller state because

the single cycle behavior of a voter is better understood this way. The new values for the

components in the abstract state are determined by the various helping functions, such as

nextstate, update_rowl, update_diagonal, etc., the definitions of which appear in the

complete specification. In the design specification, the state transformation is not specified

so directly. The design specification defines the behavior by specifying the actions that occur

on the data path components in the four phases of a clock cycle.

8.3 Specification of the FtCayuga Circuit

Figure 5 shows the circuit diagram of the FtCayuga design. The part enclosed within the

dotted lines denotes the extra circuitry that we needed to add to obtain the data path of

FtCayuga from that of MiniCayuga. The state structure and transition relation of the finite

state machine implemented by the controller remained the same as in MiniCayuga. We

added several new actions to the schedule in every controller state. None of the actions that

implemented the old instructions of MiniCayuga inherited by FtCayuga had to be altered.

Some of the major blocks in the circuit are the following: REG is the register file, which

consists of all the programmable registers of the processor; ALU is the arithmetic and logic

unit; and DEC is the instruction decoder. MEM, the main memory with which the proces'sor

interacts, is not part of the processor, although MEMis shown as part of the circuit diagram.

31

©
ACT

MTCH

OP

Datapath

f

Conu-ollcr State Machine

Figure 5: FtCayuga Circuit Diagram

32

Some of the new blocks that were added to support the new instructions are the following:

SREG is a special register file, the first five registers of which are used for the interactive

consistency task; the register indexed by PVT holds the private value used for interactive

consistency; the registers with indexes VT1, VT2, and VT3 hold interactive consistency vector

components corresponding to the successor processors, in order; and the register STATUS

holds the status output from the voter. Since the processor outputs its private value one

byte at a time, we need to keep a record of the byte number that is currently being output.

BC is a modulo byte number counter used for this purpose.

The instructions of FtCayuga are grouped into four classes: arithmetic, load, store,

and jump. Instructions belonging to the load/store class are the only ones that move data

between memory and registers; the rest are all register to register. The new instructions all

belong to the arithmetic class.

FtCayuga uses a three-stage instruction pipeline to execute its instructions. The

actions required to execute an instruction are partitioned into three stages: fetch, compute

and writeback. In any given cycle, the processor can simultaneously execute the writeback

stage of the current instruction, the compute stage of the next instruction and the fetch stage

of the next-to-next instruction. Thus, the processor usually completes one instruction every

cycle although each instruction takes three cycles.

Normally, the execution of an instruction in the arithmetic class involves the following

activities. In the fetch stage, the processor fetches the instruction from MEN and stores it

in IREG. In the compute stage, the processor first decodes the instruction, then fetches

the source operands from REG, performs the required ALU operation (add, subtract, etc.),

and stores the result in RSLT. In the writeback stage, the contents of RSLT is moved to its

destination in REG.

The controller is in one of the states labeled with a "WB" prefix when the pipeline is

active, i.e., when the processor is executing (different stages of) three distinct instructions.

The exact state in which the controller will be while the pipeline is active depends on the

class of the current instruction that is currently undergoing writeback. The writeback stage

of an arithmetic instruction will be executed in WBA. When the writeback is that of a load

or store instruction (WBS, WBL), the controller delays fetching the next-to-next instruction to

prevent a memory access clash. Hence the controller takes an extra cycle (DF) to execute

load and store instructions. The controller enters the remaining states only in case of an

33

interrupt.

This normal courseof activities is changedby the hardwareand the new arithmetic

classinstructions addedto providesupport for interactive consistencyasfollows. For all the

instructionsthe fetch stageproceedsasbefore. For SADD,the computestagealsoproceedsas

before.The destination of writeback is, however,SREGand not REG.For M0VE,the compute

stageconsistsof moving data into RSLTfrom SREGinsteadof REG.The writeback proceeds
asbefore.

For the ICOP instruction, the compute stage consists of actions that initiate inter--

active consistency operation after setting up things necessary for the operation to proceed

properly. The set up actions consist of resetting BC and clearing the STATUS register in SREG

appropriately. Interactive consistency is initiated by sending a "go" signal to the voter on

vstart output. All of these actions are performed only if the most significant bit of the input

ST is true, which indicates that the voter is free to vote. Otherwise, no action is performed

in the compute stage. The writeback stage of ICOP has no actions.

The actions required to send the contents of the private register and to input the re-

sults sent by the voter upon completion of interactive consistency are initiated automatically

in every cycle, if necessary. The actions that output the private value consist of incrementing

BC and reading out the byte pointed by BC from the private register in SREG. The actions that

update the appropriate registers in SREG with the interactive consistency vectors start when

the voter is ready. (The voter's readiness is indicated by the two most significant bits of ST

reading a '01'.) The STATUS register of SREG is updated when the interactive consistency

cycle is completed, i.e., when the voter becomes free again (most significant bit of ST a '1').

A part of the abstract specification of FtCayuga is given below. The state of the

processor in the abstract specification is represented as a tuple that includes the (abstract

versions of) states of most of the components used in the design, including the controller.

Thus, the specification is not as abstract as an instruction level description of a processor,

but is more abstract than the design specification generated by Spectool.

FtCayugaStep defines the state of the processor in the next clock cycle as a function

of the current state and the interrupt input. The outputs of the processor are specified by

defining a similar function for every output. The new values for the various components of

the ab' tract state are specified directly in the various helping function% such as newcontr,

newreg, newsreg, etc.

34

type FTCAYUGASTATE = <<CONTROLSTATE, data, data, data, data,

addr ->data, data, regaddr ->data, data,

sregaddr->data,byte_num>>

II The fields in the abstract state denote the states of the following

I[design components:

[I <<controller, IREG, DST, RSLT,HAND,

[I MEM, NXPC, PEG, iNST,

l[SREG, BC>>

FtCayugaStep s in =

<<newcontr (control s) (interruptof in) (iregof s),

newireg (control s) (interruptof in) s,

newdst (control s) (dst_of s)(iregof s),

newrslt (controf s) s,

newhand (control s) (interruptof in) (handof s),

newmem (control s) s,

newnxpc (control s) (interruptof in) s,

newreg (control s) s,

newinst (control s) (inst_of s)(iregof s),

newsreg (control s) in s,

newbc s>>

9 The Correctness Theorems"

The verification is carried out hierarchically. The main correctness theorems proved are the

following:

1. A MainTheorom that formalizes the IC correctness condition as a property of IcNetStep

(iterated 12 times). The IC correctness condition (section 5.2), as the reader may recall,

asserts that the system will correctly achieve interactive consistency, provided the

processors and the voters are all synchronized properly to execute an IC0P instruction.

2. A family of bridge theorems, one set for every nonpriraitive block in the specification

hierarchy (Figure 2). The bridge theorems for a block ensures that the design specifi-

cation %orrectly implements" the behavior specified in the abstract specification.

35

We alsoprovedaset of Properness conditions, one for every abstract and design spec-

ification of the three major blocks in the design. The Properness condition is so called partly

because it is defined by a predicate that begins with the string "Proper." The properness

condition for a block is a condition on the state of the block that is invariant over time.

That is, it is expected to be true in every clock cycle. Since the properness conditions for the

blocks are separately established as invariants, they are used in the proof of the MainTheorem

and bridge theorems by including the appropriate properness predicate as a precondition in

the theorem.

One may include any condition that is invariant and potentially useful inside a proper-

ness predicate. One condition that is always included is the assertion that the state of a

block is "well-defined." That is, no part of the data structure that represents a state (and

a signal) may take the value bottom, which denotes the "undefined" value in Caliban. Our

specification model is formulated so that the only situation in which some part of the state

or signal becomes bottom is when there is a timing error (see section 7.1) in the controller

designed for the block. Hence the theorem that establishes a properness predicate as an

invariant for the block is called a "Timing-ok-lemma" for the block.

9.1 The Main Correctness Theorem

The top part of the formal definition of the MainTheorem is given below.

MainTheorem := Preconditions 's' => KesultConsistent 's'

Preconditions 's' := Proper_icnet 's' & Sync 'LDPI' 's' & All_go 's'

Sync 'cs' '<<ftc,vtr,lnlist>>' :=

('faulty ONE' = 'False' => 'control (vtr 0NE)'='cs')

& ('faulty TWO' = 'False' => 'control (vtr TW0)'=Ccs')

& ('faulty THKEE' = 'False' => 'control (vtr THREE)'='cs')

& ('faulty FOUR' = 'False' =>'control (vtr FOUR)'='cs')

All_go 's' :=

('faulty 0NE'='False' =>

('go_of (vtr s 0NE)'='False'

& 'go_signal s 0NE'='G0' & 'bytecount (ftcs 0NE)'='BYTEI'))

36

('faulty TW0'=CFalso ' =>

('go_of (vtr s TWO)'='False'

a 'go_signal s TWO'='GO' & 'bytecount (ftc s TWO)'='BYTEI'))

('faulty THREEC=CFalse' =>

('go_of (vtr s THP_EE)C=CFalse'

& 'go_signal s THREEC='G0 ' a 'bytecount (ftcs THREE)'='BYTEI'))

('faulty FOUK'=CFalse' =>

('go_of (vtr s FOUR)'m'False _

& 'go_signal s FOUR'='GO' & 'bytecount (ftc s FOUR)'='BYTEI'))

The antecedent (Preconditions) of the theorem is a conjunction of three conditions:

1. All_go ' s c formalizes the condition that all the nonfaulty processors must be properly

synchronized to initiate interactive consistency. This predicate is stated as a conjunc-

tion of the following conditions: (1) go_signal asserts that a processor must be sending

out a GO signal to the voter, which happens when the processor is executing the write-

back stage of an IC0P instruction, and (2) the predicate bytecount asserts that the BC

register of a processor must be reset to the value BYTE1 to ensure that the data output

starts from the least significant byte.

2. Sync 'LDP1 c formalizes the condition that every nonfaulty voter must be ready to

start a new voting process. This condition is stated by requiring that the controller

part of the abstract voter state must be in LDP1 state and the go part must be False.

The latter is actually asserted by the predicate go_of inside All_go.

3. Proper_icnet 's' is the Properness predicate defined for the IcNet abstract state.

A top level specification of ResultConsistent, the consequent of MainTheorem, is

shown below ResultConsistent defines the condition that the result of an IC computa-

tion, namely the interactive consistency vectors of the nonfaulty processors, must satisfy.

This condition was informally described as the unanimous and correctness criteria for the

interactive consistency algorithm in section 3.

37

ResultConsistent 's' := Consistent 'icvec s (Iterate #12 IcNetStep s)'

Consistent 'array' :=

'faulty ONEC='False'=> IndexConsistent 'array' CONE'

'faulty TWOC='False'=> IndexConsistent 'array' 'TWO'

'faulty THREE'='False_=> IndexConsistent _array ' _THREE _

& 'faulty FOURC='False'=> IndexConsistent 'array' 'FOUR'

IndexConsistent 'array' 'index' :=

('faulty (succ index)'='False'=>

'(array index).succ'='array (succ index) c)

& ('faulty (succ2 index)'='False'=>

'(array index).succ2'='array (succ2 index) c)

('faulty (succ3 index) C=CFalse'=>

'(array index).succ3C='array (sue,3 index) c)

JJ Note that the expression "icvec init final index" is actually

11 a function on the type INDEX, and represents the vector of four values.

icvec init final index ONE = actualPVT init index

icvec init final index TWO = get_special_register VTI final index

icvec init final index THREE = get_special_register VT2 final index

icvec init final index FOUR = get_special_register VT3 final index

The function icvec constructs the interactive consistency vectors of all the proces-

sors given the system state at the beginning and end of an IC computation. The function

constructs a vector of vectors A, such that A[i] is the interactive consistency vector of the i th

processor• The vector A [i] is organized so that A [i] [1] gives the i th processor's own private

value, and the rest of it gives the values for the successor processors, in increasing order.

Organized in this fashion, A satisfies the interactive correctness criteria if for all non-t'aulty

indexes, i and j, the vectors A [i] and A [j] are identical after one of the vectors is cyclically

rotated as many times as the distance between i and j in the cyclic indexing scheme.

The function actualPVT used in the definition of icvec defines the actual value on

which the system performs the IC computation. Note that, since the processor sends the

value to the voter over two cycles, we define one half of this value based on the contents of

• the special register PVT in the cycle in which IC0P is executed and the other half based on
,%

38

ngeState

ProperABS ProperABS

//__a;geOut

StateABS StateABS OutputABS

xecute _ut

Proper_state Proper_state

& CntrlABS

Figure 6: General forms of bridge theorems

the contents of PVT in the following cycle.

9.2 General Theorems for Bridging Abstraction Levels

A set of bridge theorems are proved for a block to show that the design specification correctly

implements the behavior described by the abstract specification. Since the interface defined

by our design and abstract specifications are standardized, the bridge theorems for every

nonprimitive block take a standard form. The general form of these theorems for a block is

described below.

Note that the single cycle behavior of a block in tile design specification is defined by

means of Execute, which determines the next state as a function of the current state. The

specification also defines an Output function that extracts the outputs of the design from

the new state. Suppose in an abstract specification that the corresponding functions are

ChangeState and Change0ut actions. The state and the outputs at the abstract level are

represented as abstractions of the state and outputs in the design. To relate the beh/{4or

at the two levels it is necessary to define a set of abstraction functions that establr_s';h the

desired correspondence between the representations at the two levels. Suppose St ateABS

is the function that maps a design state to the abstract state it corresponds with, and

0utputABS does the same for the outputs. Then, the relation that must be established to

ensure that a design specification is a correct implementation of an abstract specification is

shown in Figure 6. The general formulation of the bridge theorems is given below.

39

StateTheorem := Proper_state 's' _ CntrlABS 's' =>

'StateABS (Execute s) c = CChangeState (StateABS s)'

0utTheorem := Proper_state's c & CntrlABS 's' =>

'OutputABS (Output s)' = 'Change0ut (StateABS s) c

Timing_ok_lemma := Proper_state's c => Proper_state 'Execute s'

ProperstateLemma :=

Proper_state 's' => ProperABS 'StateABS s'

The StateTheorem expresses the condition implied by the commutative diagram

shown'in Figure 6 for the state. The condition asserts that if the current states correspond

(according to the abstraction functions) at the two levels, then the new state of the circuit

a cycle later as determined by Execute must correspond to that required by ChangeState.

The 0utTheorem expresses a similar condition for the outputs of a block. Note that, in the

0utTheorem, the operator used to relate the abstract and design entities is <= (meaning "at

least as much defined as") rather than =. The reason for using <= is that, at the abstract

level, some of the outputs may be deliberately left unspecified. In this case, at the abstract

level, the semantics of Caliban automatically assigns these outputs the constant bottom,

whereas the design may assign some other value that is not bottom. Hence the need for t'he

weaker condition.

In general, a couple of preconditions may be attached to the StateTheorem and

0utTheorem. One of the preconditions is the properness predicate for the state (Properstate).

At the abstract level, sometimes the behavior may appear partitioned into several distinct

actions, although at the design level the behavior is combined into a single function. This

normally happens when some of the signals at the design level are abstracted (as c6ntrol

signals) at the abstract level. In that case, only an appropriate restriction of th_ design

behavior will correspond to the behavior described by an abstract action. The predicate

CntrlABS is used to apply this restriction.

Two other theorems that we needed to prove are classified under bridge theorems.

The T/'ming_ok_lemma is the theorem that asserts the invariant property of the Properness

predicate. The ProperstateLemma relates the Properness predicates defined at the two

40

levels. It assertsthat Proper_state at tile designlevel must be strong enoughto imply its

counterpart, ProperABS,at the next level up.

For illustration, the bridgetheoremsassociatedwith the IcNet blockareshownbelow.
Note that CntrlABS in this caseis vacuouslytrue becausethe abstract behavior wasnot

partitioned into separateactions.

II Bridge theorems for IcNet block

IcNetStepLemma :=

'IcNetABS (Execute s)'=CIcNetStep (IcNetABS s) c , Proper_state 's'

ProperIcNetLemma :=

Proper_state 's' => Proper_icnet 'IcNetABS s'

Timing_ok_lemma

Proper_state 's' => Proper_state 'Execute s'

Proper_icnet '<<ftc,vtr,inlist>>' Proper_voterstate.'vtr 0NE'

Proper_voterstate 'vtr TW0'

Proper_voterstate 'vtr THREE'

Proper_voterstate 'vtr FOUR'

Proper_ftcayuga

Proper_ftcayuga

Proper_ftcayuga

Proper_ftcayuga

'ftc 0NE'

'ftc TWO'

'ftc THREE'

'ftc FOUR'

Proper_inlist 'inlist'

10 About the Proof of Correctness

Each of the proved correctness theorems has the same general form shown below. Hence the

same proof strategy (with minor variations) was used to prove them. (In the following 's'

denotes an arbitrary state of a block.)

Somepreconditions 's' =>

'Somesimplefn s' = 'Someothersimplefn (iterate somenumb Execute s)'

41

The proof strategy that is used can be paraphrased as "controlled symbolic execution of

specification." The strategy consists of the performing following steps in order:

1. The variable s is first instantiated to a suitable structured symbolic constant, with

separate constant symbols to denote the various subcomponents of the design state, so

that the two sides of the equation in the consequent can be simplified.

2. The conditions on the symbolic constants implied by the preconditions of the assertion

are all added as hypothesis (equations).

. The two sides of the equations are simplified to their irreducible form. The goal

is to simplify the expressions so that as many "non-primitive" function symbols are

eliminated from them as possible. The resulting expressions will usually be a fairly

large conditional expression involving action invocations on the design components.

4. If the two sides of the equations do not simplify to the same term, then a case split is

performed on all the conditions in the conditional expressions.

The Spectool generates appropriate annotations to the theorem prover so that each

of these steps can happen automatically. The user must initiate the steps in that order.

This strategy worked in discovering a proof as long as the term obtained as a result of the

simplification step was reasonably small. The theorem prover seemed to hit a combinatorial

explosion bottleneck in the simplification step or in the case-splitting step when the terms

were large. The following techniques had to be used to control the combinatorial explosion

problem:

, The case-split step had to be done manually by intelligently selecting the expressions

to case-split on. An initial case split on the controller states and controller inputs

helped considerably.

. The MainTheorem, which is a 12-cycle property, was split into a series of lemmas each
/

of which characterized the intended behavior over fewer cycles. These lemm_ were

then chained together to obtain a proof for the MainTheorem.

10.1 Assumptions Made by the Proof

In proving the correctness theorems, it was necessary to make several assumptions, partic-

ularly about some of the primitive functions used in the specification. These assumptions

42

were introduced using the AXIOM mechanism of Clio before starting the proof.

The need for these assumptions arose mainly because some of the primitive functions

were deliberately left unspecified. For example, we wanted to make as little commitment

as possible about the actual bitvector representation of the various signals in the design.

For example, we left the word size, i.e., the maximum size of the values of type data,

. deliberately unspecified since none of the logic at our level of design is dependent on this

information. The only assumption made is that data is a word with four bytes, each of

which can be manipulated separately; this assumption is reflected in the definition of the

type data shown below. In such a situation it is not always possible to provide a complete

Caliban definition for the functions that manipulate the signals. Specifying these functions

as a set of AXIOMs allows one to make minimal assumptions about these functions. The

AXIOMs express "constraints" on the functions. Every such assumption made must be proved

when our design is refined by choosing a specific representation for data.

As an illustration, a few of the assumptions made are shown below. The entire set of

assumptions is given in [a]. The assumptions are classified into two categories: "technical"

and "nontechnical." The technical assumptions are made to ensure that every primitive

function is "bottom preserving," i.e., it returns bottom if it is applied to bottom. This

property ensures that all our functions propagate the error situations denoted by bottom.

A nontechnical assumption represents an assumption that has some consequence on

the structure of the design at a lower level. For example, the function majority_of, which

is used to define the majority value computed by the majority block, is assumed to satisfy

the "commutative property" formalized below. This assumption constrains the behavior

of Majority when a majority does not exist for the inputs and requires that the majority

value computed in such situations must be independent of the order in which the inputs

are presented at the input ports. One way of realizing such a behavior is to compute the

majority by taking bit-wise majority of the inputs. The totality assumption on the oReode

function imposes the requirement that, no matter what representation we choose to"_enote

the opcode of an instruction, every possible bit pattern of the opcode field must den&e some

valid instruction.

1[Here's what we are assuming about the type data:

data :f= nodata [dataerror I DATUM !number

" number ::= Word byte byte byte byte

43

opcodeof :: data -> opcode

msbof :: data -> BOOL

majority_of :: data -> data -> data -> data

[l Nontechnical assumptions

AXIOM 'majority_of x x zC='x '

AXIOM 'majority_of x z x'='x'

AXIOM 'majority_of z x x'=Cx '

AXIOM "majority_commutes"

, '!z'=CTrue '

, '!zC=CTrue '

• '!zC=CTrue '

'majority_of x y zC='majority_of y z x'

AXIOM "opcode is total" (!(opcodeof x) C=C!x '

IITechnical assumptions

AXIOM 'msb bottom' = 'bottom c

11 Concluding Remarks

The technical contributions of this work are in three areas: design, formal methods, and tool

building. In the area of design, we investigated the issues involved in incorporating support

for interactive consistency as part of the instruction repertoire of a microprocessor. We

designed a communication architecture and the voter hardware necessary for implementing

a scheme to achieve interactive consistency among the processors in a four-processor system.

We designed the interactive consistency hardware to run under the control of a special
t

instruction on the processors. In the area of formal methods, we developed a method for

modeling the design and the correctness of such a byzantine resilient system. We formally

the system as a multilevel hierarchy and verified the correctness up to a_rtainspecified

level.

The most lasting contribution of our work is, perhaps, the verification technology that

has been developed for verifying such systems. To make this technology reusable, we invested

a substantial part of our effort in embedding the technology inside Spectooh One significant

improvement to the tool was the addition of facilities to support multi-level hierarchy in the

• design.

44

Of the one man year of effort devoted to tile entire task, we devoted about five man

months to upgrading the tool. We spent about the same amount of time to study tile

interactive consistency algorithm and work out the initial design of the system. We spent

the remaining two man months specifying and verifying the design using Spectool. We

explored three versions of the voter and made several iterations through the specification-

design-verification cycle before we settled on the final version of the design. It is unlikely

that this could have been accomplished in two months without the aid of Spectool.

There are three directions in which the present work can be extended. In the hori-

zontal direction, better alternatives to the current design can be explored and verified. As

described in section 5.2, several additional properties should be proved about the hardware

to show that an appropriate program executing on the microprocessor system reliably accom-

plishes interactive consistency. The current design requires that all the nonfaulty processors

be synchronized (in their program execution) so that they all initiate interactive consis-

tency in the same cycle. It is not possible, in the present design, to make the processors

communicate by way of messages to come to an agreement to start the interactive consis-

tency operation. Providing support for such a feature is essential in reconfigurable systems

to isolate a faulty processor or to bring into the network a faulty processor that has been

resuscitated. Now that a framework to formally analyze such designs has been developed,

exploring alternative designs to provably meet other requirements should require less effort.

In the upward direction, we can explore how to formally connect a piece of software

expected ,to run on our computer system with our design. This connection wilt involve

addressing the correctness of the operating systems software that links the hardware to the

applications software.

Finally, in the downward direction, we can explore how to rigorously refine our design

(or a part of it) into lower levels (gate and switch) of hardware designs. This refinement is

a prerequisite to reliably translate our designs into silicon.

45

References

[1]

[2]

[3]

[4]

[51

[6]

[7]

Is]

[9]

[10]

William R. Bevier and William D. Young. "Machine Checked Proofs of the Design

and Implementation of a Fault-Tolerant Circuit". NASA Contractor Report 182099,

NASA Langley Research Center, Hampton, VA 23665-5225, November 1990. Authors'

affiliation: Computational Logic, Inc., Austin, Texas.

M. Bickford, C. Mills, and E.A. Schneider. "Clio: An Applicative Language-Based

Verification System". Technical Report TR 89-13, ORA Corporation, 301A Dates Drive,

Ithaca, NY 14850, September 1989.

Mark Bickford and Mandayam Srivas. "Verification of the FtCayuga Fault-Tolerant Mi-

croprocessor System Volume 2: Formal Specification and Correctness Theorems". NASA

Contractor Report 187574, NASA Langley Research Center, Hampton, VA 23665-5225,

1991. Authors' affiliation: ORA Corporation, Ithaca, NY.

Avra Cohn. "Correctness Properties of the Viper Block Model: The Second Level".

Technical Report 134, Computer Laboratory, University of Cambridge, Cambridge,

U.K., May 1988.

Warren A. Hunt. "FM8501: A Verified Microprocessor". In IFIP WG 10.2 Work-

shop, From HDL to Guaranteed Correct Circuit Designs, pages 85-114. North-Holland

Publishing Co., 1986.

R. Shostak, M. Pease, and L. Lamport. "Reaching Agreement in the Presence of Faults".

JACM, 27(2):228-234, April 1980.

Mandayam Srivas. "Bridging the Formal Methods Gap: A Computer-Aided Verification

Tool for Hardware Designs". In COMPCON91, San Francisco, CA, February 25-28 1991.

Mandayarn Srivas and Mark Bickford. "Formal Verification of a Pipelined Microproces-

sor". IEEE Software, September 1990.

D.A. Turner. "An overview of Miranda". ACM SIGPLAN Notices, 21(12):158-166,

December 1986.

Ben L. Di Vito, Ricky W. Butler, and James L. Caldwell. "Formal Design and Verifica-

tion of a Reliable Computing Platform for Real-Time Control Phase 1 Results". NASA

Technical Memorandum 102716, NASA, Langley Research Center, Hampton, Virginia

23665-5225, October 1990.

46

J
jl

A General Structure of a Design Specification

A design specification generated by Spectool consists of the parts described in the following

sections.

A.1 Structural Specification Part

This part specifies the data path architecture. It defines a set of types to model the data path

state and a set of functions to specify the connections between the data path components.

Spectool generates this part in a generic fashion from the following structural information

about the data path provided by the user:

1. the names of components and component classes,

2. the names of the actions defined on components,

3. the types that model the internal states of components,

4. the types of the external inputs to the circuit, and

5. the graphical connections between components.

To give the reader an idea of this part of a design specification, a fragment of the structural

specification part of the voter circuit is shown below.

II Generic part of the data path state definition

type SYSTEM_STATE = COMP->LOCAL_STATE

type INPUT_STREAM = NAT->EXTSTATE

type CHANGE = <<COMP,NAT,LOCAL_STATE>>

type STATE = <<SYSTEM_STATE, [CHANGE], INPUT_STREAM>>

i_ A type for every component class. The type defines the names of

_ all the components used in the data path that belong to the class.

majority ::= MAJI _ MAJ2 I MAJ3

bytereg ::= PRI I PR2 [PR3 I RI2 1RI3 I R23 I R31 I R32

bitlatch ::= VS [ST

47

[[A labeled union type of all the component class types

COMP ::= Controller I C_majority !majority I C_mux4 !mux4

I C_bytereg !bytereg I C_bitlatch !bitlatch

I(A labeled union type of all local states of components

LOCAL_STATE ::= S_Controller !CONTKOLSTATE

] S_majoriZy !maJority_localstate

S_mux4 !mux4_localsZate

S_bytereg !bytereg_localstate

[S_bitlatch !bitlatch_localstate

ACTION ::= A_majority !majority_ACT

A_mux4 !mux4_ACT

I A_bytereg !bytereg_ACT

[A_bitlatch !bitlatch_ACT

((The following specifies the input connections to the component MAJ2

majorityinput s (C_majority MAJ2) =

<<getbyteregoutO (current s (C_bytereg R32)),

getbyteregoutO (current s (C_bytereg R12)),

getbyteregoutO (current s (C_bytereg PR2))>>

The type STATE defines the data path state as a tuple: <<SYSTEM_STATE, [CHANGE],

INPUT_STREAM>>. SYSTEM_STATE maps every component (an element of type COMP) in the

data path to its LOCAL_STATE. [CHANGE] is the list of pending actions on the data path

components. This listis maintained to simulate the effect of delays on actions. The list

contains an update record for each of the actions that has been triggered by the controller

on components, but is yet to be completed. The first two fields of STATE define a snapshot

in time of the data path state. The state of a component is given by SYSTEM_STATE unless

an action is pending on the component, in which case the state is bottom.

The third field of the tuple, INPUT_STaEAM, specifies the values of the external inputs

to the circuit as function of time. INPUT_STREAM is a function type from time (NAT) to

EXTSTATE, where EXTSTATE is a type that combines all the external inputs into a tuple.

48
Z

The type LOCAL_STATE is a labeled union of the local states of all the components

of the data path (and the controller). The local state type of a component is a tuple of

its internal state and (a tuple of) its outputs. The definition of the local state type of a

component appears as part of the component class specification.

The set of components in a data path is organized so that every component is an

instance of a component class. The type ¢0MP groups together the names of all the compo-

nents in a data path. It is defined as a labeled union of all the component class types, where

a component class type is an enumerated type of the names of all the components belonging

to the corresponding class.

Similarly, the type ACTION groups together the names of the It is defined as a labeled

union of all the action types of the component classes, where the action type of a component

class is an enumerated type of the names of all the actions defined for the class. The definition

of the action type of a component appears as part of the component class specification.

Connections between data path components are specified by defining, for every com-

ponent, a function that determines the inputs to the component in a given data path state.

A.2 Component Classes Specification Part

Every component in the data path is an instance of a component class. The components

belonging to the same class share several attributes. This part specifies the shared attributes

of a class for every class used in a design. A component class specification defines the type

that denotes the internal state of a components of the class, the types of the outputs, a

type denoting the names of the actions on the components, and the effects of the actions

on the components. For every action, it defines three functions: "state _ and "output"

functions return, respectively, the new state and the new outputs of a component after an

action is performed; and the "delay" function gives the delay associated with the action. For

illustration, a part of the specification of the majority component class used in the voter

circuit is given below.

II The component class majorit F.

II Local state of majority: <<internal state type, <<output types>>>>

type majority_localstate = <<<<data, B00L>>,<<(byte),(B00L)>>>>

49

]] Type denoting the actions on the components of the class

majority_ACT ::=

select3 !majority I

select2 !majority l

select0 !majority

selectl !majority J

comp !majority

majoritydelay (select3 c) = #0

majoritycomp (select3 c) - C_majority c

majorityout (select3 c) s <<inl,in2,in3>> = <<get_byte 3 (dataof s), bitof s>>

majoritystate (select3 c) s <<inl,in2,in3>> = s

majoritydelay (select2 c) = #0

majoritycomp_select2 c) = C_majority c

majorityout (select2 c) s <<inl,in2,in3>> = <<get_byte 2 (dataof s), bitof s>>

majoritystate (select2 c) s <<inl,in2,in3>> = s

A.3 Controller Specification Part

A controller isspecified by means of two functions next st at e and scheduler. The next st at e

function gives the next controller state as a function of the current state and controller in-

puts. The nextstate function is used at the end of each cycle to advance the controller

state. The function scheduler returns a list of actions as a function of the controller state,

controller inputs, and the phase. For illustration, a part of the specification of the controller

for the voter circuit is shown below.

CONTROLSTATE ::ffi LDPI I LDP2 J XNG11 i XNG12] XNG21 J XNG22 [XNG31

I XNG32 _ CMPP _ 0UTI I 0UT2

nextstate LDPl in = ('(startedof in))->(LDPI);(LDP2)

nextstate LDP2 in = XNGll

scheduler XNGll <<vstart, started>> 0 - (selprvtlby_eO)

5O

selprvtlbyteO = [A_bytereg(readO PR1), A_mux4(choose3 MUX)]

scheduler XNGi2 <<vstart, started>> 0 = (selprvtlbyte2)

selprvtlbyte2 = [A_bytereg(read2 PRI), A_mux4(choose3 MUX)]

JJ Some of the details specific to the voter design

JJ There are 4 clock phases per cycle.

num_phases = 4

A.4 Composite Behavior Specification Part

This part defines a set of functions that derive the composite behavior of a design using the

information expressed in the rest of the specification. This part formalizes in Caliban the

operational model of the behavior of a finite state controller system. This part is identical

for every circuit since Spectool generates it in a completely generic fashion. The higher-order

function definition capability of Caliban is a primary reason why it is possible to express

this part in a generic fashion. A top level fragment of this part of the specification is shown

below.

Execute s = do_phases 0 s

Output s = generate_output 0 s

do_phases n s = update_state s , n = num_phases

do_phases (n+l) (do_phase n s)

do_phase n <<s,p,in>> =

advance_inputstream (do_actions (current_schedule s2 n)

where s2 = update_state <<s,p,in>>

s2)

The two main functions defined in this part are Execute and Output. Execute advances

the state of the system across a single cycle. Output returns the (tuple of) external outputs

produced by the circuit over the next cycle. Output actually returns a list outputs, one for

every phase in a cycle. The two functions are defined hierarchically in terms of several other

functions, some of which are described below.

51

To simulate the effect of delays on component actions, the specification maintains a

list of records of pending updates that have been triggered by the controller, but are yet to

take effect on the circuit state. The update record for an action contains the component on

which the update is pending, a time-out counter that is initialized to the delay of the action

and decremented after every phase, and the result of the update. The function update_state

causes the result of all the update records on the list that have timed out to take effect on

the circuit state. The function also decrements the time-out counter of the update records

that have not yet timed-out by one unit of time. The purposes of the rest of the functions

should be apparent from the names of the functions. They are summarized below.

• The function do_phases updates the state for all the phases in a cycle.

• The function do_phase updates thestate for a single phase. It causes (using update_state)

the pending updates that have timed out to take effect; gets the current_schedule

from the controller, makes new update records (using do_actions) for all the actions

in the schedule, and then advances the input stream by a time unit.

52

current

setup

state _ next state

I--L_
Figure 7: Clock Timing Convention

B Timing Constraints of the Hardware Model

B.1 Timing Implications to Lower Level Design

Figure 7 illustrates a connection between our abstract timing model and a more concrete

one with an explicit clock with four non-overlapping phases. We use the convention that the

actions scheduled in a certain phase of a state are triggered by the active (rising) edge that

immediately follows the phase. The action nextstate, which moves the controller from the

present state to the next, always occurs in phase 4. (Note that the nextstate action must

have a unit delay.)

The constraints that our timing model imposes on a lower level hardware design

where the clock signal is manipulated explicitly are the following. The system clock edge

must reach each element in the circuit simultaneously. In practice, every clocked component

requires that its inputs be stable for a certain period ("setup time") prior to the clock edge.

The setup time is not explicitly taken into account in our timing model. But, our timing

analysis ensures that the setup time constraint is met provided every signal changes only

synchronously with the clock and the "zero" delay actions are handled properly at the lower

level. One must ensure that the real expected delay (/_) of the logic circuit that implements

a "zero" delay action is small enough so that "phase time," i.e., the time between two

consecutive active edges, must be greater than (_ + setup time).

The last constraint, however, does not imply that our design model precludes the use

of a combinational block that is expected to have a significant amount of delay relative to

a given clock period. The constraint means that the action implemented by the block must

53

r

|_

r current state

setup

Receiver's clock behind sender's

..jr- _ next state r I

I- current state

skew _" -

setup

Receiver's clock ahead of sender's

Sender

--- Receiver

_1 _ next state _1
r I - v 1

--1 F

Figure 8: Implications of Clock Skews

be assigned a delay (in phases) that is at least as large as the expected delay (in real time).

Then, our timing analysis will ensure that the outputs of a combinational block will not be

used before it stabilizes.

B.2 Timing Implications of Clock Skew on Design

Given a concrete elaboration (as shown in Figure 7) of our timing model in terms of clocks,

we can analyze some of the effects of a nonzero skew between the corresponding active edges

of the clock signals controlling two communicating blocks in a design. Suppose an action

scheduled on a receiver in a certain phase of the clock needs to use a signal that is expected

from a sender in the same phase. If the clocks of the receiver and sender are perfectly syn-

chronized (zero clock skew), then the sender's signal will stabilize in time to satisfy the signal

setup requirement of the receiver. However, suppose there is a skew between the two clocks.

Figure 8 shows the two possible situations. If the receiver's clock is behind sender's, then to

meet the setup requirement for the receiver, the sender's signal must not change for at least

as long as the clock skew period in the following phase. If the receiver's clock is ahead of the

sender's clock, then the clock skew must be small enough to allow for the signals produced by

54

the senderto stabilizebeforethe receiver'ssetup time. If the signalsstabilize instantaneously

in the phasein which they areproduced,then there will not be a problem. Sincethere will

alwaysbe somereal combinationaldelays(for zerodelayactions), this situat'ionimposesthe

following condition: clock skew < (phase time - (set up time + combinational delay),

where phase time is the time between two consecutive active edges. The first constraint can

be satisfied by choosing a large clock period relative to the worst case clock skew. We ensure

that the second constraint is not violated by using the following safe design convention: The

sender must hold its signal for one additional phase following the phase in which the receiver

is supposed to use the signal.

55

w

,,._,,_ _., Report Documentation Page

1. Report No 2. Government Accession No. 3. Recipient's Catalog No.

NASA CR-4 381

4 Title and Subtitle

Verification of the FtCayuga Fault-Tolerant

Microprocessor System

Volume I: A Case Study in Theorem Prover-Based
Verification

7. Author(s)

Mandayam Srivas and Mark Bickford

9. Perform)ng Organization Name and Address

O1_. Corporation
301A Harris B. Dates Drive

Ithaca, NY 14850-1313

12. Sponsonng Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, FA 23665-5225

5 Report Date

July 1991

6. Performing Organization Code

8. Performing Organization Report No,

10. Work Unit No.

505-64-10-05

11. Contract or Grant No,

NASI-18972

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Technical Monitor: Ricky W. Butler, Langley Research Center
Task i Final Report

Volume 2 published as NASA CR-187574.

16. Abstract

This paper presents a formal specification and verification of a property of a
quadruplicately redundant fault-tolerant microprocessor circuit design. The circuit
performs the task of attaining interactive consistency among the processors using a
special instruction on the processors. The design is based on an algorithm proposed by
Pease, Shostak and Lamport. The property verified ensures that an execution of the
special instruction by the processors correctly accomplishes interactive consistency,
provided certain preconditions hold. An assumption is made that the processors execute
synchronously. The verification was done using a computer-aided hardware design
verification tool, Spectool, and the theorem prover, Clio, both of which were developed at
ORA. A major contribution of the work is the demonstration of a significant fault-tolerant
hardware design that is mechanically verified by a theorem prover. The work illustrates
the advantage of using hierarchy and abstraction in system design specification to
manage the complexity of formal verification. It demonstrates the value of a special-
purpose tool that tailors the use of a theorem prover to a hardware domain in order to
reduce the effort required for formal verification.

17, Key Words (Suggested by Author(s))

Fault Tolerance

Formal Verification

Byzantine Agreement
Hardware Verification

Mechanical Theorem Proving
19 Securi_ Cla_if. (of this report) 20. Securi_ Cla_if. (of this

Unclassified Unclassified

18. Distribution Statement

Unclassified - Unlimited

page)

Subject Category 62

21. No, of pages

61

22 Price

A04
* L

=_

NASA FORM 1626 OCT 86

For sale by tile National Technical Information Service, Springfield, Virginia 22161-2171

NASA-Langley, 1991

